
T -

(V)

'm

Icy

School of Applied Science

and Engineering Technology
(NASA-C-176960) 1AVEShIGATIICN .M AN N86- 2E9L15

ALVNCE FALI CILANTINTGbAiL AVIONICS
SYSIEM final lEchnical Fer-rt, Ncv. 1963 -

Mlar. 1986 'UnivEzsity ot SoutherL coiorddo, Uinclas
PuEblc.) 76 CSCL 01D G3/06 43449

OCT 03 1989

UNIVERSITY OF SOUTHERN COLORADO
2200 North Bonforte Boulevard Pueblo/Colorado 81001

--b beaP
~ t-t mAW

NASA COOPERATIVE AGREEMENT NCO 2-277

INVESTIGATION OF AN ADVANCED
FAULT TOLERANT INTEGRATED

AVIONICS SYSTEM

FINAL TECHNICAL REPORT
covering the period

November 1983 - March 1986

Principal Investigator: Dr. W.R. Dunn

Co-investigator: Dr. D. Cottrell

Research Assistants: Joel Flanders
Alan Javornik
Michael Rusovick

Institution. University of Southern Colorado
Electronics Engineering Dept.

*2200 N. Bonforte BlvdI Pueblo, Colorado 81001

.I

a

PE, SUSAiN FLOYD
SCIENTIFIC & TECI[NOLOGY
INFORMATION FACILITY

Accession For

TABLE OF CONTENT 1 TI .A&I

Scction Contents
By -- _

Distrlrit i cn/

Tab les AvCilK ' ' t- ,
tafl /cr

Figures Dist Speclal 2

Notation 3

Report Summary 4

1.0 INTRODUCTION: REPORT OUTLINE AND OBJECTIVES 5

2.0 AMA? IN THE ADVANCED ROTORCRAFT APPLICATION 7

2.1 Introduction 7

2.2 Advanced Rotorcraft Digital System 7

2.2.1 AMAP in the Integrated Digital System 7

2.2.2 AMAP Components 12

3.0 AMA? FAULT TOLERANCE REQUIREMENTS AND RELIABILITY GOALS 14

3.1 Introduction - Basic Definitions and Concepts 14

3.2 Fault Tolerant Digital Systems Design - Overview 14

3.3 Reliability Models and Goals 16

3.3.1 Reliability Models 16

[3.3.2 Reliability Goals and Estimates 17

4.0 AMAP ARCHITECTURE TRADEOFF STUDY 19

4.1 Simplex System Reliability Analysis 19

4.2 Redundant AHAP Architectures - Theoretical 19

4.3 Standby Redundancy for AMAP/SANDAC IV 25

4.3.1 Diversity of Module Types 25

4.3.2 Register/Memory Reconfiguration 25

4.3.3 Flight Safety Fault Tolerance 26

4.3.4 Additional Hardware Overhead 26

4.3.4.1 Bus Redundancy 27

4.3.4.2 Power Distribution Faults 27

4.3.4.3 Power Supply Overhead 28

4.3.5 Additional Software overhead 28

1 4.4 Standby vs. Dual-Redundancy for AMAP/SANDAC IV 28
d

4.4.1 Introduction 28

14.4.2 Static vs. Dynamic Redundancy Management 30
Requirements

4.5 Tradeoff Study Conclusion 32

5.0 HARDWARE AND SOFTWARE DESIGN CONSIDERATIONS FOR
I AMAP/SANDAC IV DUAL ARCHITECTURE 34

5.1 Introduction 34

5.2 Redundancy Management-System Level 34

1 5.2.1 System Redundant Architecture 35

5.2.2 System Redundancy Management 37

5.2.2.1 Authority Hierarchy 37

5.2.2.2 Cockpit Redundancy Management 38

5.2.3 System Fault Handling 38

" 5.3 Redundancy Management-AMAP "" 'AC IV 40

5.3.1 General Consideration- 40

5.3.1.1 Fault Mechanisms and Effects 40

5.3.1.2 Fault Detection Strategy 41

5.3.1.3 Hardware vs. Software Redundancy 42
Management

5.3.2 Built-in-Tests 42

5.3.3 Deadline Mechanisms 44

5.3.4 Software Assertions 44

'I

r

5.3.5 Built in Redundancy Management Functions 45

5.3.6 Predictive Task Scheduling 45

5.3.7 Wraparound Tests 46

t 5.3.8 Cross-channel Testing 48

5.4 Fault Handling - AMAP/SANDAC IV 50

5.4.1 Dual Processor Fault Detection and Isolation 50

5.4.2 Cockpit Fault Monitoring and Reconfiguration 53
Logical Requirements

5.5 Verification and Validation of Digital System Fault 55
(. Tolerance

5.5.1 General Considerations 55

5.5.2 Verification Design Analyses of Fault Tolerant 56
Systems

5.5.2.1 Reliability Analysis 57

5.5.2.2 Failure Modes and Effects Analysis 57

5.5.2.3 Fault Tree Analysis 58

5.5.2.4 Single-Point-of-Failure Analysis 58

5.5.2.5 Analysis Limitations 59

5.5.2.6 Verfication Documentation 59

5.5.3 Fault Tolerance Validation Testing 59

5.5.3.1 General Considerations 59

5.5.3.2 Hardware Fault Insertion 62

5.5.3.3 Resident Fault Simulation 62

5.5.4 Elimination of Man-Made Faults 65

6.0 CONCLUSION 67

REFERENCES 68

APPENDIX 69

N

TABLES

TITLE PAGE N

2-1 Major AMAP Functions ii

" 2-2 AMAP Modules for STAR Tests 13

4-I1 Characteristics of Architectures of Figure 4-I 24

4-2 Characteristics of AMAP/SANDAC IV Architectures 31

5-1 Typical Built-in-Test Functions 43

5-2 Synchronous vs. Asynchronous Systems 49

5-3 Summary of Self-Test Methods 51

5-4 Typical Single Points of Failure 60

I.

Il

-1

I FIGURES

I FIGURE PAGE NO.

2-1 AMAP in the Advanced Rotorcraft System 8

4-1 (a) Simplex System 21

4-1 (b) Dynamic Redundancy with Single Spare 22

4-1 (c) Static Dual Redundancy 23

4-2 Dual-bus/Dual-buffer implementation 23-A

[5-1 Dual Processor Channels in Advanced Rotorcraft System 36

5-2 Authority Hierarchy 39

5-3 Wraparound Tests 47

5-4 Processor Fault Status 52

5-5 Cockpit/AMAP Redundancy Management Interface 54

5-6 Fault Insertion Device for Semiconductor Chips 63

5-7 Design Errors vs. Validation test time 66

[
I
E

E

1 2

NOTATION

ADAS = Army Digital Avionics System.1, ADOCS = Advanced Digital Optical Control System.
AFTI = Advanced Fighter Tactical integration.
AMAP = Army Multibus Avionics Processor.
AVRADA = U.S. Army Avionics Research and Development

Activity
BIT = Built In Test
CBIT = Continuous Built In Test
CPU = Central Processing Unit.
EMI = ElectroMagnetic Interference.
EPROM = Erasable Programmable Read Only Memory.
FLIR = Forward-Looking Infa-Red.
I/O = Input/Output.
IFR = Instrument Flight Rules.
LHX = Army family of light helicopters for the 1990sI! and beyond; scout, light attack and utility.
LRU = Line Replaceable Unit.

LSI = Large Scale Integration.
I MBIT = Maintenance Built In Test

MTBF = Mean Time Between Failures.
NOE = Nap Of Earth.
PBIT = Pre-flight Built In Test
PROM = Programmable Read Only Memory.
RAM = Random Access Memory.
RAMPS = Redundant Asynchronous Microprocessor System.

F REBUS = REsident BackUp Software.
SANDAC IV = A compact, modular microprocessor (68000) card family

developed by Sandia National Laboratories.
STAR = (Army) System Test bed for Avionics Research
VHSIC = Very High Speed Integrated Circuits.
VLSI = Very Large Scale Integration.
1553B = A military standard number corresponding to a

I. serial data bus.
68000 = Model number of a Motorola 16-bit microprocessor.

r

-3-

'I

REPORT SUMMARY

1This report presents an advanced, fault tolerant multiprocessor
avionics architecture as could be employed in an advanced rotorcraft
such as LHX.

The processor structure is designed to interface with existing
digital avionics systems and concepts including the Army Digitali Avionics System (ADAS) cockpit/display system, navaid and

communications suites, integrated sensing suite, and the Advanced
Digital Optical Control System (ADOCS).

The report defines mission, maintenance and safety-of-flight
reliability goals as might be expected for an operational LHX
aircraft. Based on use of a modular, compact (16-bit) microprocessorIcard family, results of an preliminary study examining simplex, dual
and standby-sparing architectures is presented.

Given the stated constraints, it is shown that the dual architecture
is best suited to meet reliability goals with minimum hardware and
software overhead.

The report presents hardware and software design considerations for
realizing the architecture including redundancy management
requirements and techniques as well as verification and validation
needs and methods. / r i .

VC
L

1-4

1.0 INTRODUCTION: REPORT OUTLINE AND OBJECTIVE

This report was prepared for, the U.S. Army Avionics Research and

Development Activity (AVRADA) which, during the report period is

investigating an advanced computer architecture known as AXAP (Army

Multibus Avionics Processor.)

The Army's AMAP development was intended to explore two ccncepts:

(1) the application of multiprocessing to avionics real-time

data processing.

(2) Use of a compact, modular packaging scheme developed by

Sandia National Laboratories called SANDAC IV.

L The development of real time multiprocessing techniques is

extremely important: near-future operational systems (such as LHX;

pose a quantum jump in data processing requirements that will

I. outstrip single-CPU capability. Concurrent application of the SANDAC

IV packaging is intended to keep the expanded equipment requirement

forced by multiprocessing irvto manageable equipment volumes and LRU

(1 counts.

This report develops a fault tolerant structuring of AMAP as it

1: might be applied in an advanced application such as LHX.

Section 2 accordingly presents a top-down, baseline picture of

AMAP as it might appear and function in an advanced rotorcraft

system.

Section 3 explains the need for fault tolerant structuring of

Ii AMAP and states reliability goals for system maintenance and flight

safety.

IS

A tradeoff study based on candidate fault tolerant architecture:

and the reliability goals of section 3 is presented in section 4.

Thiis latter section also presents a candidate fault tolerant

structure for AMAP (as employed in the baseline system of Section

2).

Detailed hardware and software design considerations needed to

realize fault tolerant performance of this structure are discussed

in Section 5.

A conclusion is presented in the final section of the report.

Although this report develops a preliminary, fault tolerant

architecture for AMAP/SANDAC IV its principal purpose is to convey to

*the digital avionics designer/analyst the perspectives, tools arid

Vtechniques leading not only to implementation of this architecture

but any of its future variants.

'I

I.

-6-

2.0 AMAP IN THE ADVANCED ROTORCRAFT APPLICATO:Q:

2.1 Introduction

In this section, a baseline picture of AMAP, as embedded in an

alvai:ced Ar.y rotorcraft, is developed. It is important to note

that definition of digital hardware and software requirements

against 1990's operaticnal needs is in an early formative stage.

7he baseiire rotorcrft system developed in this report is therefore

based on a projected synthesis of several known Army development

programs including AMAP. (These programs are discussed in more

detail in the next section.) As indicated in the introduction

(Section 1), a major objective of this report is not to reach a

final definition of thl 1990's digital system but to provide the

avionics designer.'analyst with some of the key perspectives and

tools needed to reach this ultimate goal.

I .

2.2 Advanced Rotorcraft Digital System

2.2.1 AMAP in the InLegrated Digital System

Figure 2-1 depicts AMAP as connected to the major digital

subsystems of the advanced rotorcraft. These subsystems include:

(1) Cockpit control/display system as currently being

investigated in AVRADA's ADt.- program (reference 1)

(2) Conventional Navaid and communications suite.

(3) Voice interactive signal processor (an ADAS cockpit-control

extension)

(4) Integrated se.isor and advanced communicati.ons suite

(as defined for LHX in references 2, 3 and 4.)

,,

- -7-

%A -i

Icio
I.~

C- 0

C/ C

Cj

L

-8--

(5) The Army's Advanced Digital Optical Control Systen (ADOCS)

as described in reference 5.

Functionally, cockpit elements and the AMAP processors constitute

the central manager of the overall digital system of Figure 2-1.

AMAP functions with regard to these subsystems (with the exception of

ADOCS) include:

(1) All cockpit, flight management and navigation functions of

the current (reference 1) ADAS processors.

(2) Management and support processing of the integrated sensor

suite including sensor analytical redundancy management.

ADOCS is a "fly-by-wire" system interconnecting cyclic, pedal

and collective cockpit controls to flight control actuators. ADOCS

processors additionally provide stability and handling-qualities

augmentation as well as limited maneuvering capability. Unlike AMAP,

ADOCS is a flight critical system (i.e. loss of ADOCS function will

most likely lead to loss of the aircraft.) In the analyses in this

report it is assumed that AMAP will interface with ADOCS by:

(1) Receiving (redundant) autopilot and air data sensor for use

in integrated sensor-fusion/analytical-redundancy

algorithms.

(2) Transmitting limited authority (outer loop) navigation

commands including:

(a) Preprogrammed bob-up trajectories,

K (b) Memorized remask trajectories,

(c) Conventional IFR approaches and departures (category II
minimums.)

-9-

F?.m in ~ alllmi

The foregoing AMAP functions are summarized in Table 2-1.

(It is noted that full authority navigation functions such as

automatic NOE flight are not considered in the analyses of this

report.)

7

I
a 10

TABLE 2-1

MAJOR AMAP FUNCTIONS

0 COCKPIT COTROL/DISPLAY FUNCTIONS

I..

0 NAVIGATION PROCESSING

0 SUPERVISE/MANAGE VHSIC PROCESSING RELATED TO:

*.. - VOICE INTERACTIVE SUBSYSTEM
- TARGET ACOUISITIONIDENTIFICATION SUBSYSTEMS

l - COMUNICATIONS

0 PROCESSOR SYSTEM REDUNDANCY MANAGEMENT

0 FLIGHT CONTROL

- PROVIDE (REDUNDANT) TRAJECTORY COMMANDS

- PROVIDE OUTER LOOP CONTROL COMMANDS ONLY

0 SENSOR/COMMUNICATIONS SUBSYSTEM REDUNDANCY
MANAGEMENT

r
-LI

14

2.2.2 AMAP Components

In this report the 68000/SANDAC IV AMAP System projected for the

Army's System Test Bed for Avionics Research (STAR) testing is

considered. Here a simplex (i.e. non-redundant) system wcild contain

the modules shown in Table 2-2 in the indicated quantities.

(Note: Table 2-2 does not include numeric processor or VHSIC

based processor modules which would very likely be employed in the

advanced rotorcraft system. Exclusion of these modules affects

neither the validity of the analysis and design methods discussed

in this report nor the presented conclusions.)

t.

i-

I' -12-

TABLE 2-2

AMAP MODULES FOR STAR TESTS

MODULE TYPE QUANTITY

MASTER PROCESSOR 1

SLAVE PROCESSOR 3

15536 VO SLAVES 3

GLOBAL MEMORY 1

STANDARD SERIAL/PARALLEL I/O 1

POWER SUPPLY 1

I"

°1

,I

£

j - 13-

7 -

3.0 AMAP FAULT TOLERANCE REQUIREMENTS AND RELIABILITY GOALS

3.1 Introduction - Basic Definition and Concepts

This report addresses the fact that all digital system components

are subject to physical failure. In analysing contemporary PC-card,

electrical-contact-oriented rotorcraft avionics systems using the

reliability analysis methods of MIL-HDBK-217, one finds that there are

three primary forms of physical failure:

(1) Electrical interconnect failures such as open connector/

switch contacts, PC trace opens/bridges, open/shorted solder

. joints.

(2) Semiconductor device failures such as out-of-specification

parameter shifts, metalization defects, and wire bonds.

(3) Discrete component failures such as opens/shorts in filter/

decoupling capacitors.

Physical failures can lead to physical fault defined as an

unspecified and disruptive change in the logical function and/or of

a timing digital component, assembly, subsystem, etc. Digital

system faults may also arise from "man-made" faults in the fory of

[improper specificatons, software errors, inadequate electromagnetic

interference (EMI) protection, lack of understanding of thermal/

F vibration environment, etc.

[3.2 Fault Tolerant Digital Systems Design-overview

In the broadest sense, a fault tolerant digital system is a
9

system which can continue to function correctly after the occurrence

F of (physical) faults and/or "man-made" faults. Its principal

-14-I

characteristic is that it will employ additional hardware and/or

software that would not be needed were the system free from faults.

One would naturally seek to avoid, or at least minimize, this

additional hardware an:/or software overhead. Accordingly, the

digital system in its non-fault tolerant form is analysed to determine

the effects of faults on systems performance and reliability goals.

If these goals cannot be met, fault tolerant design is then pursued

by:

(1) Introducing hardware and/or software redundancy i.e.

developing fault tolerant architecture(s)

(2) Designing hardware circuits and/or software algorithms that

will make the architecture "work" i.e. developing

redundancy management methods

(3) Evaluating the results of (1) and (2) through analysis and

testing i.e. system verification and validation

As one might suspect this process is iterative, involving

consideratio, of candidate architectures followed by analysis,

consideration of modified architectures, further analysis, and so on.

Since the design activity is done against reliability goals, it

is helpful to briefly discuss not only reliability goals (i.e. for

AMAP) but reliability prediction models as applicable to fault

tolerant system's design.

[-15

3.3 Reliability Models and Goals

3.3.1 Reliability Models

Reliability is defined as the probability that an item (e.g.

component, subsystem, etc.) will perform satisfactorily for a

specified period of time under a stated set of use conditions. In

this report the single-parameter, exponential reliability model* is

employed where,

R(t) = e- Xt (2-1)

and

R(t) = probability that item will operate without failure for

time period, t (in hours)

e = base of natural logarithms

A= item failure rate (in failures per hour), assumed to be

constant for a given set of stress, temperature and part

quality levels.

In this report, reliability calculations are based solely on

physical failures, i.e. x represents the physical failure rate of

the hardware item.

Two companion definitions will be employed:

(1) Mean time between failures (MTBF) defined as the reciprocal

of the item failure rate. I.e.,

MTBF (item) = 1A (2-2)

I This is considered to be a reasonable model for electronic

components of the type employed in AMAP.

-16-

s

i(2) Unreliability U(t), the probability of occurrence of a

rphysical fault in an item. Here,

U(t) = 1-R(t) (23)

[Note that the foregoing definitions apply to simplex (i.e. non-

redundant) items. (Reliability calculations for systems employing

redundant components are presented in Section 4.)

[3 .3.2 Reliability Goals and Estimates

[The preceding subsection addressed notions of item or component
reliability. This subsection discusses system reliability

F requirements or goals with specific consideration of AMAP

reliability goals in the advanced rotorcraft application. In the

next section, estimates of system reliabilities of candidate AMAP

architectures will be calculated using component reliability data.

This estimate will, as a result, correspond only to physical faults.

I.e. it will not take into account "man-made" faults. In this sense,

system reliability estimates consitute an upper bound which would be

reached when all "man-made" faults are removed in system development.

Reliability goals represent the desired performance of the

fielded equipment. There are three reliability goals for the

advanced rotorcraft:

(1) Mission reliability

(2) Flight safety reliability

(3) Maintenance reliability

-17-

I - I

Mission reliability represents the probability that there will

not be a mission abort due to failure of "mission-critical"

components. Flight safety reliability corresponds to probability

that aircraft and/or crew will not be lost due to failure of "flight-

safety-critical" components. Maintenance reliability represents the

probability that system components will not have to be replaced.

Based on the LHX study (references 2 and 3) and the ADOCS report

of reference 5, the following reliability goals for AMAP are used in

this report:

-5
Mission: < 5 X 10 /hr (MTBF = 20000 hrs.)

-7
Flight Safety: < 10 /hr.

-3
Maintenance: < 1.5 X 10 /hr. (MTBF 667 hrs.)

I18
-18-Li

4.0 AMAP ARCHITECTURE TRADEOFF STUDY

4.1 Simplex System Reliability Analysis

The appendix presents a preliminary reliability analysis for a

simplex AMAP system employing the ten modules listed in Table 2-2.

The analysis results show that the simplex AMAP system reliability
-3

(approx. 10 /hr.) does not satisfy LHX-level mission reliability
-5

goals (5 X 10 /hr.) and that a fault-tolerant design will be needed

to meet the goals.

4.2 Redundant AMAP Architectures - Theoretical

FAMAP is a multiple-module system. Although circuit design

tec'niques could corceivably be invoked to realize individual, fault

tolerant AMAP modules, it is far more practical to employ redundant

modules. (The reasoning behind this statement will be seen in the

subsequent discussion.)

In this subsection, a "first cut" is made to develop candidate

redundant structures for AMAP. As it turns out, redundancy can be

implemented in two ways:

(1) Dynamic Redundancy

A core of modules is supplemented with redundant hardware

such that in the event of a fault, "good" hardware will be

automatically substituted for the faulty hardware and correct

operation continued. A well known approach for doing this

involves use of stand-by-spare hardware (e.g. reference 2).

-19-

(2) Static Redundancy

Modules are simply -eplicated in duplex, triplex, quadruplex,

etc. form. In the event of a fault, the faulted module is

simply passivated and system operation taken up by the

remaining, good modules. Static redundancy is employed in

ADOCS (reference 5).

In this sub3ection, a system of n modules is considered

structured in three ways:

(1) As a simplex system (to be used as basis for comparison)

(2) As a dynamically redundant system employing a single spare

module.

(3) As statically redundant system in which all modules are

simply duplicated

(Redundancy beyond single-sparing (dynamic redundanc:) and duplication

(static redundancy) are not considered since they represent "overkill"

for the AMAP application.)

Figures 4-1(a) through 4-1(c) depict the above three configur-

ations and also show equations for computing mission and maintenance

reliabilities. To compare these three it is assumed that ten modules

-4
are employed and that each has a reliability of 10 /hr. I.e.,

n = 10
-4

q = 10
0

Table 4-1 shows computed reliabilities for the three structures.

Also shown are relative packaging weights and volumes based on the

V assumption that these parameters are directly proportional to module

count.

-2o-

ARCHITECTURE: SIvMPLEX

STRUCTURE:

APPROXIMATE RELIABILITY EQUATIONS:

r1 MODULES

SYSTEM FAILURE PROBABILITY PER HOUR

MODULE FAILURE PROBABILITY PER HOUR

\ . .

FIGURE 4-I(A)

-21-

ARCHITECTURE: DYNAMIC REDUNDANCY - SINSLE SPARE

STRUCTURE:

L3

APPROXIMATE RELIABILITY EQUATIONS:

nMODULES * SPARE

rr
Ie

t.F

RSYSTEM FALURE PROBABILITY ONE HOUR (ISSION)

{ *SYSTEM FAILURE PROBABILITY ONE HOUR (MAINTENANCE)

MODULE FAILURE PROBABILITY PER HOUR

FIGURE 4-1(B)

-22-

ARCHITECTURE: STATIC REDUN1DANCY - DUAL

STRUCTURE:

APPROXIMATE RELIABILITY EQUATIONS:

rYl MODULES. DUPLICATED

r..

'SYSTEM FAILURE PROBABILITY ONE HOUR (MISSION)

£ "SYSTEM FAILURE PROBABILITY ONE HOUR (MAINTENAI

a MODULE FAILURE PROBABILITY PER~ HOUR

FzGuRE 4-1(c)
[-23-

6!

BUS DATA BUS

SPEXUAi M INIERFAC.E

BUS DATABu

1 I loo

PROCESSOR 0

2 I /

MODULE

/ E

BUS SELECT

FUE~2REDUNDANCT MNPRLE U INTERFACE

BUS A BUS B
BUS DATA

MODULE 2

B, uS SELECT L 100.

,- El

ro BOARD REAL ESTATE PENALTY: 20% 30% (AREA)

rFIGURE 4-2 REDUNDANCY IN PARALLEL BUS INTERFACE'

~-23-A-

0 0

-4 -
0 E3

I Cd

0) te

4-V.

o~ ~ t"Ca %

&4 -4 -1

00

424

U

I-

NN
o +21

0 .100
o- atiI.- -4

.CI~ Oj 0.0 H =

46) E- 0 0

-24

It is clear from the table that, at this level of analysis, the

dynamic redundancy based on a single spare will not only satisfy AMAP

mission and maintenance reliability goals but is far superior

strategy to static duplication.

Dynamic reduncancy however involves considerable hardware and

software ovei head nct required in the dual system. This is discussed

in the next subsection.

4.3 Dynamic Redundancy for AMAP/SANDAC IV

This subsection discusses some of the practical implications of

realizing staniaby redundancy for the SANDAC IV - based AMAP system.

4.3.1 Diversity of Module Types

The "first-cut" analysis in Section 4.2 carries the implicit

assumption that modules are identical - i.e. the "spare" can replace

any failed module. AMAP however consists of a family of modules,

e.g. 6 distinct types are employed in the 10 modules of Table 2-2.

In comparing AMAP module reliability estimates to the goals it is

clear that a "spare" would have to be carried for each module type

bringing the total count to 16 modules.

4.3.2 Register/Memory Reconfiguration

In reconfiguring a programmed - logic (e.g. microprocessor)

system one must not only replace hardware but The contents of a

failed unit's registers and data memory. Although a faulted module

may contain correct register and memory contents, faults within an

AMAP/SANDAC IV module will most likely block a spare module's

accessibility to this information. To effect fault recovery, the

-25-

spare module will have to either:

(1) Reconstruct register/memory contents of the failed unit.
or

(2) Obtain "spare images" generated (by parallel computation)

either locally or from some other module.

Data reconstruction is impractical:

(a) Values for pure counters and integrators cannot be

reconstructed. These elements can however be expected to be

widely employed in the advanced rotorcraft software

algorithms.

(b) Processor reconfiguration times can introduce unacceptable

transport delays in the software algorithms resulting in

navigation/targeting errors and possible system instabilities.

I Consequently some amount of spare parallel computation will be

required in the dynamic redundancy approach. This would have to be

done in the existing, or possibly additional, spares.

4.3.3 Flight Safety Fault Tolerance

AMAP computations leading to (ADOCS) flight control commands must,

as a minimum, be duplicated in both hardware and software and results

of both trans-mitted to the flight control system. (This would

provide the flight control computers with a fail-detect-only

capability and the require-ment to autonomously effect fail-safe

recovery.) The duplicated computation would have to be done in the

existing, or possibly additional, spare(s).

4.3.4 Additional Hardwarc Overhead

9-26-

IIIIIII Il lIII II

1.

4.3.4.1 Bus Redundancy

SANDAC IV modules employ a simplex, parallel bus for inter-

module communications. Module faults, most notably in interconnects

and bus interface buffers, have a sizeable probability (Appendix A)

of "jamming" the bus and taking the entire system down. Remedies

for this would include both:

(a) Dual parallel bus.

(b) Isolation circuitry (e.g. dual buffers, analog switches, or

relay networks).

Figure 4-2 shows a possible dual-bus/dual-buffer solution in which

external signals (X and Y) could be generated by a non-faulted
i i

module to isolate faulted module i.

It is estimated that implementation of such a solution would

entail a 20% to 30% increase in board area for each module. (It is

believed that an analog switch network would require substantially

more area; a relay network solution is not practical.)

4.3.4.2 Power Distribution Faults

In the SANDAC IV modules, the +5 VDC and + 15 VDC rails

constitute a single-point-of-failure in the sense that device

breakdowns, connection "opens", trace shorts, etc. in a given module

can propogate faults via the power bus into other good modules.

To protect the system from this probable type of fault,

protection circuitry (e.g. LC filters and regulators) would have to

L be provided on each module for each supply voltage. (Estimated card

area penalty: 10% - 20%).

-27-

4.3.4.3 Power Supply Faults

I Dual power supplies are required. Implementation of this

redundancy would very likely require additional load sensing and

transfer circuitry on each power supply module. (Estimated card

[area penalty: 10% - 20%.)

4.3.5 Additional Software Overhead

[Although the focus of this section is on hardware redundancy, it

Ii is well known that redundancy management software overhead for

dynamic, stand by systems can be very high. Static redundancy

management software typically co-mands some 10 - 40% of system memory

and throughput resource. This figure can go to 70 - 90% for dynamic

I redundancy management. (The reasons for this will be seen in Section

4.4.) Additional software overhead translates to hardware overhead:

i.e. additional slave processor(s) and memory.

! 4.4 Static Redundancy vs. Dynamic Redundancy for AMAP/SANDAC IV

[4.4.1 Introduction

The foregoing paragraphs show that an implementation of AMAP

using dynamic redundancy will involve the additional

hardware overhead:

L(1) Six spares would be required to cover the diversity of

module types.

- (2) Module circuit complexity would have to be increased to

provide fault tolerance for parallel bussing and electrical

power distribution resulting in a 30% to 50% increase in

module volume.

(3) Some amount of hardware duplication would be required to

-28-

F

provide memory/register data "spares" and to meet flight

safety requirements.

(4) Additional computational resources would have to be provided

j to support redundancy management software.

I' Under the assumption that items (3) and (4) could be accomodated

using the spare modules, items (1) and (2) would represent the

| minimum hardware overhead needed to realize standby redundancy.

I-

I

I

I

~-29-

Table 4-2 shows characteristics for theoretioal standby-

redundancy, AMAP/SANDAC IV standby-redundancy and dual redundancy,

Figures for the AMAP/SANDAC IV system are minimums. There figures

show that in terms of hardware requirements, the static and dynamic

architectures are roughly equivalent: both have comparable

maintenance reliability; both satisfy mission reliability

requirements.

7

4.4.2 Static vs. Dynamic Redundancy Management Requirements

Discussion to this point has been principally concerned with

establishing survivability through modular hardware redundancy.

Redundancy however must be "man3ged": if a module fails, the

surviving modules must be able to detect the failure, isolate it and

effect recovery. It has already been indicated (Section 4.3.5) that

the hardware and software* overhead requirements for dynamic

redundancy can significantly exceed those for static redundancy and

in fact constitute the major function of the overall hardware/

software system. This appears to be the case for AMAP/SANDAC IV.

When employed in the dynamic, single-standby-redundancy structure, a

faulted AMAP module can successfully transmit "bad" data and

addresses to non-faulted modules contaminating (or "faulting") the

latter. Unless corrected, this kind of propagated faults can lead to

system failure. The root of this problem is the fact that the 68000

microprocessor architecture has a very limited amount of register/

memory error detection correction coding. To insure system

survivability against fault propogation:

* These two elements can be traded off one for the other.

-30-

,0

-I-C

l

I -4

m. CC C\ C'J

COC
C.) -

LlL

C,

t co

8 1 0

I ~ =I 0

C.,j

(aQ0

e 00 L C

(Vo 'o~

-31

(1) A majority of "good" processors would have to monitor and

validate each bus transaction. For example, a slave attem-
I pting to write global memory would first have to have the

transaction validated by another slave and the master before

the write could be effected.

(2) Each module's continous built-in-test would have to be very

extensive. For example, RAM checksums would have to be

computed for each memory access.

L. These expedients cut very deeply into overall system throughput

L capability. For the 68000 architecture (and for that matter any

conventional fixed-instruction-set microprocessor) certain areas

[remain uncovered such as:

[(1) Undetected PROM faults generating invalid op-codes

(2) The "unintelligent" modules such as the 1553B and general

[purpose I/O modules.

The above problems do not arise in the dual architecture since

module failures within one module set do not affect the function of

I- the other module set. (This statement must be somewhat qualified

since dual modules will communicate with each other. As will be seen

in the next section, fault propogation protection is easily handled

r with minimal demands on system throughput.)

4.5 Architecture Tradeoff Study - Conclusion

[For AMAP/SANDAC IV employing the ten modules shown in Table 2-2:

(1) Static redundancy would appear to be superior to dynamic

-32-

redundancy in terms of hardware requirements.

(2) Redundancy management demands on system throughput would be

significantly less for the statically redundant, dual

architecture.

The dual architecture accordingly appears to be the "best"

approach for meeting advanced rotorcraft mission, maintenance and

flight-safety reliability goals.

-33-

41l

5.0 HARDWARE AND SOFTWARE DESIGN CONSIDERATIC FCR AMAP/SANDAC IV

DUAL ARCHITECTURE

9 5.1 Introduction

The foregoing section developed AMAP module set duplication as a

candidate redundant architecture for the advanced rotorcraft.

T There are two remaining steps to complete the design process:

1) Definition of redundancy management hardware and software

p! methods that will implement the fault tolerant design.
2) Verification and Validation steps to insure that the design

meets both functional and fault tolerance requirements.

These two steps are the subject of this section.

Before proceeding, it is important to note that redundancy

management methods are invoked as a defense against physical faults

only. Although redundancy management methods can to an extent handle

certain types of man-made faults, the latter are all hopefully found

in the final verification and validation steps.

' 5.2 Redundancy Management-System Level

In section 4, the dual AMAP architecture was developed against

what was essentially a simplex advanced rotorcraft system (Figure 2-1.)

In this subsection, the structure and function of this system

T' architecture is redefined in a manner that will satisfy both

processor reliability goals and system reliability goals.

r-34-

I,.

5.2.1 System Redundant Architecture

Figure 5-1 depicts the dual processor embedded in the advanced

rotorcraft digital system. This proposed structure is similar to

that of ADAS and features:

1) ThL dual AMAP module sets or channels.
2) Dual redundancy in cockpit control/display subsystems.

(Cockpit functions are assumed to be mission-critical. It is

further assumed that the overall cockpit system must be fail-

operate to satisfy system reliability goals. Note that this

does not necessarily imply that cockpit hardware must be

duplicated "across the board")

4 3) Dual 1553B connections to the simplex sensor suite.

4) Dual 1553B connections to the flight control subsystem.

5) Cross-strapped 1553B connections to dual radio communications.

6) Inclusion of redundancy management functions in the cockpit

control display subsystem cross-strapped with AMAP. (This

/ is discussed further in Section 5.2.2.2)

In this Structure:

1) Both processors compute in parallel.

2) For sensor system processing, one processor's 1553B interface

* to the sensor and communications subsystems is active

*(receive and transmit); the other processor's 1553B interface

to tne sensor and communications subsystems is in standby

7 kreceive only.)

3) Both processors' 1553B interfaces to the cockpit and flight

control subsystems are active (transmit and receive.)

-35-i

C,,

-j-
Z~0

zoo

or~

Q)~
L.J

0 da 0 D
0 - LA J

O~zz

0- a~ 6- 0
0 0 Ui Z C, c

00-0-

-E~~- Cd (AJL J

=J Z :)J< L.-
.- Ic0 I

LL.J

1-44

-36

(Note: This system configuration, as defined, is based on

the assumption that sensor and communications subsystems will

employ conventional dual-1553B ports in active/standby mode.

Dual active connections to cockpit are recCmmended; dual

active connections to the flight control subsystem are

mandatory where AMAP signals can effect flight safety.)

5,.2.2 System Redundancy Management Design Considerations

5.2.2.1 Authority Hierarchy

Redundancy management involves not only fault detection and

isolation but action to deselect, reconfigure and/or switch

resources. Owing to the complexity of digital systems, one can not

exclude the possibility of faults which result in fault-handling

contentions between crew and the system or between elements within

the system. For example, one cannot exclude the possibility of

certain fault classes wherein pilot and computer (or one computer and

another) "disagree" on the nature or location of faults and engage in

a "fight" to assert control. For this reason, the system must be

designed so that system elements have relative levels of authority; a

higher authority element always having the capability of overriding

element(s) of lower authority.

For the redundant avionics system, we would have, starting with

the highest authority:

1) Crew decision/action.

2) Cockpit redundancy management subsystem (see below).

3) Dual AMAP channels.

-37-

4) Balance of digital system (sensor subsystems and

communications subsystem.)

This hierarchy is illuqtrated in Figure 5-2.

Note that the flight control subsystem (ADOCS) is excluded in

this list since its redundancy management considerations are

completely independent of those of the avionics system.

5.2.2.2 Cockpit Redundancy Management Subsystem

Since ultimate authority for digital system management resides in

the cockpit, panel avionics are required to display system fault

status and permit the crew to alter (e.g. deselect, reconfigure,

switch, etc.) resources at will.

This system is presently undefined but is seen to have the

following requirements:

1) It must be fault tolerant not only within its own structuring

but be capable of surviving all possible faults that can be
/

generated by the subsystems it controls.

2) As will be seen, it will have to have some degree of

(automatic) decision-making capability to support redundancy

management of the dual AMAP system.

5.2.3 System Fault Handling

Following the authority hierarchy described in Section 5.2.2.1:

1) AMAP would utilize sensor subsystem BITE status, 1553B

protocol (e.g. parity) and analytical redundancy (reference 2)

to automatically detect failures in the sensor subsystems and

deselect sensor(s) accordingly.
/

" . -38-

CREW DECISION/
ACTION

COCKPIT
CONTROL IDISPLAY

AVIONICS

DUAL AMAP

AV ION ICS

BALANCE OF SYSTEM
(EXCLUDING ADOCS)

FIGURE 5-2 FAULT TOLERANCE AUTHORITY HIERARCHY

I-. -39-

2) In the event of processor and/or 1553B channel failure, AMAP

processors and the sensors would be manually or automatically

switched to the standby processor and standby 1553B channels.

Before discussing the mechanics of effecting this switch (Section

5.4) it will be useful to examine, in more detail, the nature and

effects of (physical) faults and how they are dealt with within the

AMP processor hardware.

5.3 Redundancy Management Techniques - AMAP/Sandac IV

Given that we have a dual active/standby structure for AMAP, our

design objective is to develop methods to defect faults when they

occur in the active channel and to effect the manual or automatic

switch to the standby channel. An objective of this subsection

therefore is to provide the avionics designer with both the general

philosophy behind redundancy management and a "shopping list" of

known redundancy management techniques.

5.3.1 General Considerations

5.3-.1.1 Fault Mechanisms and Failure Effects

Although possible semiconductor and connector failure mechanisms

are small in number, the number of possible failure states in a

microprocessor system are virtually infinite. One cannot therefore

pursue design of fault detection methods by enumerating all possible

failure states.

We therefore take a more "macroscopic" view by noting that faults

in a microprocessor system will in most cases result in three

outcomes:

-40-

. ... ' -,,--,- ,n nnn, um an u un

1) Incorrect sequential logic. (The most likely outcome here

will be a system halt or "crash".)

2) Incorrect data values originating from faults in read/write

-- store (assuming that memory has no parity protection) and I/O.

3) Incorrect frame rate resulting from oscillator/counter

drifts/faults.

5.3.1.2 Fault Detection Strategy

Given a system of redundant channels, there are two basic

strategies for detecting a faulted channel:

a) Each channel can perform self-diagnostics. When a fault is

encountered, the channel declares itself "failed".

b) Channels can perform cross-diagnostics, "good" channel(s)

detecting and identifying the "bad" channel(s) or at least

the existence of disagreements.

The first of these strategies is preferred for two reasons:

The first is philosophical: under the self-diagnosis strategy a

channel falsely declaring itself failed is indeed failed; under the

cross-diagnosis strategy, a "bad" channel can declare a "good"

channel failed thereby setting up a total system failure.

*The second reason is practical: Self-diagnostics are easy to

-" implement; cross channel diagnostics are much more difficult.

" Emphasis in the following is therefore placed on self-diagnostic

techniques.

-41-

i . i I . I

U

* 5.3.1.3 Hardware vs. Software Redundancy Management Implementation

Redundancy management can be effected using hardware (parity

checkers, comparators, "watchdog" timers, etc.) and/or software

techniques. Since AMAP/SA:DAC IV hardware is assumed to be a

"given", emphasis in the following is on software techniques. (Some

, ' additional hardware requirements are however indicated; these are

pointed out in the discussion).

5.3.2 Built-in-Test (BIT)

Processor and processor system built-in self-tests are performed

to not only detezt in-flight processor faults but to: (a) assist in

maintenance, (b) provide preflight tests to assure that the

processor system is correct. (Recall that mission reliability

predictions are made under the premise that the system is fault-free

when committed to mission operation.)

One can therefore identify three levels of BIT:

a) Maintenance Built-in-Test (MBIT.)

Comprehen.Ave test designed chiefly against field walntaina-

bility requirements.

/ b) Preflight Built-in-Test (PBIT.)

Subset of MBIT functions designed to provide fast, preflight

check of system integrity.

c) Continuous Built-in-Test (CBIT)

Subset of MBIT and/or PBIT functions. Run in real time (each

frame or in background across several frames) for purpose of

detecting in-flight faults which do not affect program flow.

7 Typical BIT funcitons are shown in Table 5-1.

'i-
• -42-

TA3LE 5-I

TYPICAL MICROPROCESSOR BUILT-IN-TEST ELEMENTS

0 CPU Tc%-S

- iNSTRUCTION SET TESTS
- ALU LOGICAL FUNCTIONS
- ALU ARITHNETIC FUNCTIONS
- REGISTER TESTS

O ADDRESSABLE VO AND INTERPROCESSOR COMMUNICATIONS

- MONITOR VALIDITY OF PREPROGRAMvED TRAFFIC
- TOKEN PASSING WITH DATA TRANSFERS

o NUMERIC PROCESSOR

- ARITHMETIC CHECKS
- FUNCTION CONPUTATION CHECKS

o MEMORY

- PROM/EPROM CHECKSUMS
- RAM PARITY
- FULL ADDRESS/CONTENT TESTS (PREFLIGHT)

O TIMING

- WATCHDOG TIMERS
- INTRAPROCESSOR TIMNO CHECKS

- 3

-43-

[

For AMAP, both master and slave processors would execute local

BIT routines.

5.3.3 Deadline Mechanisms

As indicated earlier, microprocessor faults have a high

likibood of disrupting intended sequential logic flow with the result

that the system logic goes into a halted, fixed state.

Deadline mechanisms are a simple, effective means to detect this

condition. The most widely-used mechanism of this sort is the so-

called "watchdog timer". Here, an independent digital or analog

timer is employed. In normal operation, the processor periodically

(e.g. at the end of each computation frame) resets the timer. In the

event of a fault-caused processor halt, the reset signal is not

generated causing the timer to "time out" and flag the halt-state

event. (The "watchdog" will also detect some oscillator failures.)

The "watchdog" principle can often be implemented without adding

timer hardware. For example, the master and slave processors in an

AMAP cnannel can each simply count frames and exchange frame counts.

These multiple processors can accordingly "watch" one another and

signal a fault condition when a frame count mismatch is encountered.

The reader can probably envision other (hopefully better) ways to

apply this principle within the existing AMAP structure. (Additional

"watchdog" hardware may be required for AMAP to cover the possibility

of an entire processor channel entering a halt state.)

5.3.4 Software Assertions

* - Read/write (i.e. RAM) memory failures can result in incorrect

data variables. (It is assumed that there is no RP.1 parity

-44-

Sd checking.) Software assertions simply consist of code inserted in

the application program which test the "reasonableness" of input data

* and computational results. Input or data memory failures resulting

in unreasonable data values or data value changes in time can be

flagged with these assertions. Assertion code blocks can be

incorporated as a part of CBIT.

5.3.5 Built-in Redundancy Management

AMAP/Sandac IV hardware has several inherent features which can

and should be employed to support fault detection including:

I a) 1553B parity checks

b) Parallel bus protocols

c) Processor exception handlers

5.3.6 Predictive Task Scheduling

In designing combined sequential and parallel software tasks, one

has two basic options:

a) Static (Predictivej Tasking. Task sequences are preplanned.

A specific task sequence is executed only on the basis of

polled input discretes (e.g. pilot mode selects).

b) Dynamic (Adaptive) Tasking. A task sequence is not known

apriori, but occurs on the basis of interrupts and/or values

of the input data.

In theory, dynamic tasking is superior in the sense that the

"user" is serviced promptly and "dead time" tasks are avoided. In an

avionics system however this superiority is not practically realized

since:

-45-[-i:

1% a) Data changes and event response requirements are slow with

respect to the system sampling (or frame) rate.

b) Task sequencing requirements are made not in the interest of

rapid task execution but in getting the worst case task

sequence done within the sampling period.

Static tasking on the other hand has a large potential benefit in

detecting those sequential logic faults and timing faults that do not

result in a processor halt. Since each possible task sequence is

known in advance, processors withing the system can be programmed to

verify that the correct sequence is indeed being executed. (Such

programming could employ a combination of token - passing between

processors and subframe counters.)

5.3.7 Wraparound Tests

Wraparound tests are designed to detect faults in processor I/O

hardware. (In all of the foregoing redundancy management methods,

software is employed to enable the CPU to check itself, memory,

interprocessor communication integrity and timing. Input structure

integrity testing is limited to parity checks and assertion testing;

output integrity however cannot be determined via the CPU.) To

effect wraparound testing one simply connects processor (parallel,

serial, and 1553) outputs to corresponding inputs and executes I/O

I. tests to verify that input and output hardware are functioning

I" correctly.

The concept is illustrated in Figure 5-3. Hardware overhead is

j required to effect the wraparound test, specifically the (analog)

switch network to effect the input-output connection.

-46-

0

* -4,

P.-~-C-

CD-

of-
CD ><

C)) CI"i

0

C-)

LLAJ

-47-

5.3.8 Cross-Channel Testin

Fedundancy management techniques presented to this point have

focused on the preferred approach of having individual AMAP channels

jdetect and announce their own faults.

Faults can also be detected externally:

a) Standby channel for example can monitor 1553B transmissions

of the active channel and compare the latter's transmitted

data values to its corresponding computed values. (Active

channel transmissions to flight control subsystem would not

be monitored since standby channel will also be transmitting

to that subsystem.) If miscompares are encountered, the

standby channel can signal the cockpit that a fault condition

has been detected.

b) Flight control subsystem can likewise signal a fault

condition on miscompare. (In this event, the flight control

subsystem would have to revert to fail-safe mode of

operation.)

c) ?onnected sensor and communications subsystems can, through

parity checks and local data assertions, identify some (but

not all) incorrect outputs from the active channel.

d) Cockpit Control/Display Avionics can likewise effect

[comparisons of processor outputs provided that the former have

access to 1553B outputs.

[To implement comparison monitoring, one must be concerned with

synchrvnization (or lack thereof) of the dual AMAP channels. Pros

and cons of synchronous and asynchronous strategies are summarized in

P Table 5-2.

-48-

Table 5-2 Synchronous vs. Asynchronous Redundant
Digital Flight System

SYNCHRONOUS ASYNCHRONOUS

- Cross-channel data - Hardware channels
differences provide independent
positive fault
indication in output
voting plane.

ADVANTAGES
- Can use metastable

algorithms (i.e. pure
counters and integra-
tors) in closed-loop
operation

- Synchronization logic - Requires time-refer-
constitutes system encing for certain
single-point-of- variables
failure

- Subject to nuisance
DISADVANTAGES trips in output

voting planes

- Requires asymp-
totioally stable
algorithms in closed
loop application

-

I-49..

5.4 Fault-Handling - AMAP/Sandw2 IV

I-

5.4.1 Dual Processor Fault Detection and Isolation

in the event of a fault in an active channel, three events must

transpire:

a) The fault must be detected,

b) The fault must be isolated to the active channel,

c) The "switch" must be made from the active to the standby

Ichannel. (I.e. the system must bQ reconfigured.)

Standby channel faults would be flagged for maintenance;

I flight would continue on the active channel with no backup.

As discussed earlier, dual processors can detect faults through:

a) Self-tests (These are summarized for the readers convenience

in Table 5-3)

b) Cross-channel comparison of 1553B outputs.

As also discussed, identity of a faulted channel is more or less

"guaranteed" through self tests whereas comparison monitoring can

"guarantee" only fault existence.

Following the authority hierarchy discussed in Section 5.2.2.1,

channel switch would be effected manually or automatically in the

cockpit. To support implementation of this "switch", dual processor

channels would have to provide status signals to the cockpit. These

status signals are summarized in Figure 5-4.

r-50-
61

TABLE 5-3

SUMMARY OF SELF-TEST METHODS

* BUILT-IN-TESTS (TABLE 5-1)

0 DEADLINE MECHANISMS

- WATCHDOG TMERS
- TASK SCI-EDULE MONITORING

O ASSERTIONS

- REASONABLENESS CHlECKS ON COMPUTED DATA VALUES

- ANALYTICAL REDUNDANCY

O BUILT-IN REDUNDANCY MANAGEMENT FUNCTIONS

- 1553B PARITY
- PARALLEL BUS PROTOCOL

- EXCEPTION/TRAP HANDLERS

* PREDICTIVE SEOUENTIAL LOGIC FLOW

- MULTIPLE PROCESSOR CHECKS ON REQUIRED TASK FLOW

O WRAPAROUNDS

- COCKPIT CI'ECKLIST FUNCTIONS FOR MAINTENANCE A1,4D
PREFLIGHT BUILT-iN-TEST

- DEDICATED HARDWARE TO TO EFFECT I/O CLOSURE

-51-

*0 2

co r

L.j

CL~ In --

LLJ~(-c t m
X,. z -

-#.- =

0) 0

.4n

2o1-
-52-

.

5.4.2 Cockpit Fault Monitoring and Reconfiguration Logic Requirement

Management of the dual processor redundancy, most particularly

the switch of channels, would be effected with the cockpit control

display avionics. At the present time, this system and its functions

are undefined. This subsection therefore deals only with the

embedded requirements of the cockpit avionics to effect fault

detection, fault isolation and the switch to the standby unit.

Such requirements would be refined (and quite possibly changed) as a

part of the cockpit system detailed design.

Cockpit/AMAP redundancy management interface is summarized in

Figure 5-5. Features of this interface include:

1) Circuit breaker disconnects to each channel.

2) Pilot can select:

(a) Either processor channel in automatic mode enabling

automatic channel switch, or,

(b) Either processor in non-automatic mode (channel not

switched)

3) Automatic mode would effect automatic switch to standby

channel under the sole conditions of:

(a) Standby channel self-test indicating no faults, and,

(b) Active channel self-test indicating fault.

Cross channel miscompares would only be announced; action

would be left to pilot decision.

In implementing the foregoing cockpit functions one will probably

have to address the question: "Which channel should be selected as

the active channel?" In theory, it does not matter since the

-53-[

cz

CL

I.- -C-jl

V)(~ CD-j

I-I. 0 a
T - 0j =~

=f U U = d< ~
-C 0

LL. (Z- LUL

U -73 3jLL

CL

-54-

preflight built-in-test (PBIT) is designed to assure that both

channels are perfect when flight operations commerce. From a

practical standpoint however, one cannot design a "perfect" PBIT.

For example, a standby channel may have a weak parallel output port

connection which looks "good" on ground PBIT but suffers from

intermittent "opens" from flight vibration. If the port is in

standby, this fault will show up only after a switch from the active

channels is mae. These kinds of faults (frequently referred to as

latent faults) tend to accumulate in non-exercised, standby systems.

An effective means of purging these kinds of faults is to

periodically alternate active/standby roles of the two channels.

Scheduling of active/standby roles could be incorporated in AMAP's

built in maintenance - testing/logging system, designated roles being

furnished automatically or as a crew checklist advisory.

5.5 Verification and Validation of Digital System Fault Tolerance

5.5.1 General Considerations

In the design, development and fielding of the fault tolerant

digital system one seeks to satisfy not only system functional

requirements but continued, correct system operation under all

probable fault conditions.

The following paragraphs discuss some of the major techniques

that have been employed in the past to address digital system fault

tolerance. (No one has yet found a way to prove fault tolerance

under all probable fault conditions.) These techniques are employed

as a part of the engineering activity generally referred to as sytem

verification and validation. Several definitions exist for these

! i: -55-I!'

terms. For the purposes of this report we will use the following

definitions:

(Fault lulprance' Verification - Process of establishing that the

AMAP/SANDAC IV - based rotorcraft system design will continue to

function correctly under all probable fault conditions.

(Fault Tolerance) Validation - Process of testing in the real

environment or an enviionment nearly as real as possible that the

system does continue to function under all probable fault conditions.

Verification activities are principally "paper" oriented,

consisting of on-going design analyses begun at the early,

preliminary design phase and iontinuing through completion of

detailed, documented system design. A major emphasis in verification

is to continually insure that (written) system specifications are

being satisfied during the development process.

Validation activities on the other hand are concerned with the

actual performance of the complete, piloted system in a fall-up

simulation or flight environment. Validation activities seek not

only to verify specification correctness but the fact that actual

system requireienL r 3f ctualy being zatisfied

Given these definitions, verification and validation activities

as applicable to AMAP/SANDAC IV fault tolerance are discussed

seperately as follows.

E 5.5.2 Verification Design Analyses of Fault Tolerant Systems

As indicated earlier in this report, a fault tolerant system

[definition evolves through an iterative sequence of candidate design

-56-

definition followed by design analysis.

The following briefly describe four principal analysis approaches

that are frequently employed in fault tolerant system design

analysis.

5.5.2.1 Reliability Analysis

Preliminary reliability analyses for AMAP/SANDAC IV were

presented in the beginning part of this report (Sections 3 and 4).

SucL analyses provide "order-of-magnitude" accuracy and are intended

to guide overall evaluation of architectural candidates.

As more detailed system definition evolves, one turns to more

accurate, formal reliability prediction methods including:

(a) MIL-HD3K-217D, a piece-part reliability prediction tool.

(Single channel reliability estimates; maintenance

reliability estimates.)

(b) MIL-STD-756B, derives reliability equations for redundant

system configurations.

(c) Reliability estimating computer programs such as the CARE

III reliability modelling and analysis program recently

released by NASA Langley.

5.5.2.2 Failure Modes and Effects Analysis (FMEA)

FMEA constitues a "bottom-up" approach for evaluating fault

tolerant systems. Here, one identifies the probable failure modes

that can occur at the component, module, and/or system level. For

S each identified failure mode, the system is then analysed to

determine its fault response.

-57-[1

, Probabilities are often associat-d with each failure mode so that

a net probability can be assigned Lo the aggregate failure effects of

all failure modes.

5.5.2.3 Fault Tree Analysis

rFault tree analysis "reverses" the FMEA and begins with a "top-
level" event such as "total system failure." Given the "top-level"

event, one then seeks to define all of the "second-level" events

which can give rise to the former. Each "second level" event is then

Ibroken down into "third level" events, and so on. This process

results in a tree structure, the lowest-levels of the tree

constituting system component failures.

[- ,.5.2.4 Single-Point-of-Failure Analysis

[Redundant system realizations frequently contain single elements

which when failed can lead to total system failure.

The "man-made" faults discussed in Section 3.1 can constitute

single-points-of-failure. Redundant systems may moreover depend upon

I elements such as non-fault synchronization logic or simplex monitors

whose physical faults can lead to system failure.

In effecting a single-point-of-failure analysis, one seeks

through scrutiny of system documentation to identify all of the

possible single-points-of-failure and to estimate the probability of

occurance of each. The analysis can lead to one of two actions:

[(a) Retaining the element(s) constituting single-points-of-

failure where it is clearly demonstrated that system

reliability requirements are not coiipromtsed, or

(b) Redesign including possible additional redundancy.

-58-
p

Common single-points-of-failure are summarized in Table 5-4.

5.5.2.5 Analysis Limitations

All of the foregoing analysis approaches are in reality ad hoc

engineering approaches: reliability estimates are as good as the

user's reliability model; correspondingly, there are no guaranteed

ways of enumerating all failure modes, to generate complete fault

trees or to identify all possible single-points-of-failure.

The analysis techniques do however collectively constitute

somewhat independent, systematic frameworks with which the

designer/analyst can eliminate design deficiencies that would

otherwise produce serious setbacks during validation testing or lead

to costly retrofitting in the field.

5.5.2.6 Verification Documentation

Fault tolerance analysis methods and results are invariably

documented for the purposes of:

(a) Obtaining airworthiness approval.

(b) Guiding development of the validation test plan.

5.5.3 Fault Tolerance Validation Testing

5.5.3.1 General Considerations

Although design analyses are important ingredients in ultimately

realizing viable complex digital flight systems, there is probably no

better development tool to demonstrate design integrity (or to expose
design weakness) than testing.

The AMAP/SANDAC IV development will undoubtedly go through

several levels of testing:

-59-

Table 5-4 TYPICAL SINGLE-POINTS-OF-FAILLRE

SINGLE-POINt-OF-FAILURE FOT-N TIAL SOLUTION TECHNOLOGY DnIONSTRATION

System reset with - Classical Recovery Block
SOFTWARE transfer to priritive

and prov&ble code. - REBUS
NASA Ames Dryden 1978-1984

Manual/watchdog - Classical Retry
£141 reset. Automatic

(all channels) recovery witb mesa- - Microprocessor Experiments
ured/zero aircraft NASA Ames 1978-1932
state estimate.

Parallel asynchronous - RAMPS NASA Amts 1979-1982
SYNCRONIZATION operation with static/ - Shuttle Co=puters Synchronl

LOGIC stable algorithms. - AFTI/F-16 Total Failure

100% Screen/Testing - Shuttle experienced failure
GENERIC COPONE Select common com-

DEFECTS ponnents from dissem- - Shuttle flys generic
ilar lots/processes hardware.

VLSI DESIGN/TOOLING Self test/finite - VLSI on Boeing 757/767
SOFTWARE state test Fly-by-wire Engine Control.

-60-V

1) Module tests.

2) Individual channel bench tests (single AMAP LRU tested

against simulated inpu;s and outputs.)

3) Bench tests with the redundant configuration.

4) Ground simulations with pilot-in-locp (as presently being

done with ADAS).

5) "light testing.

To test system fault tolerance one must, quite obviously, have

faults as input stimuli. Although components can be expected to fail

during development testing, such faults can be expected to comprise

only an infinitesmal fraciton of all probable faults. It is

therefore necessary Lo inject simulated faults during those tests

perform'd as a part of system functional validation.

Two basic approaches for injecting faults are hardware fault

insertion and softw4are fault simulation. These are discussed in the

following paragraphs. Before discussing these methods it is noted

that fault injection exercises constitute part of a (written) overall

system test plan. One must accordingly develop a fault injection

test plan which hopefully will cover all the probable faults that can

occur during system operation. Results of fault tree and failure-

modes-and-effects analyses provide key inputs to this test plan.

One cannot, of course, test against all faults. For this reason,

f. the verification analyses are frequently considered as additional

bases for system validation.

[1 -61-

I

5.5.3.2 Hardwere Fault Insertion

With the prospect that several thousand faults may be injected

during validation testing, one has the design challenge of

introducing valid faults but doing so in a manner that will not

damage system components. For example, short circuit faults to

.. ground of high-current-carrying conductors are hard to simulate

without producing over-voltage stresses on semiconductor junctions.

Other types of hardware faults can however be safely and
,

realistically simulated. For example:

a) Connector open-contact-faults can be simulated using a

relay or analog switch test rig temporarily placed between

plug-connector interfaces within the system.

b) Semicor,ductor pin-level faults consisting of "stuck-at" and

"open" logic levels have been simulated using the test setup

illustrated in Figure 5-6. (Reference 6).

A well planned fault insertion setup will have the fault

insertion hardware under (minicomputer) software control permitting

input of a large number of fault patterns and automatic logging of

fault response.

5.5.3.3 Resident Fault Simulation

Although the hardware fault insertion approach can provide

realistic fault stimuli it has two major disadvantages;

a) Considerable effort must go into design and development of

insertion hardware.

i*

[USC understands that this is currently being done with ADAS at AVRADA

-62-

vIr~4,bA~ r (44A Aan d/e. -)

.4,: 7b~ murupfezexor

44-ri

~111TPins

w

% /T

S9MZ M

FIGURE 5-()FAULT INSERTION SETUP FOR SEMICONDUCTOR DEVICES

-63-

DEVICE

I u[

-l SIGNAL TO/FROM PACKAGE

I-i DIRECT
PNT CONNECTION

I LANT f~CONTROL

sSIGNAL TO/FROM SOCKET

SOCKET

FIGURE 5-6(s) DETAIL OF INJECTiOf' CIRCUIT
BETWEEN ,EVICE AND SOCKET

-64-I.

b) Test set-up time can be prohibitive. (Insertion hardware

would cover only a limited number of eleotrical contacts and

chips. This hardware would have to be relocated several

hundred times during validation.)

Many hardware faults can be simulated by colocating a fault

simulation program with the applications programs in the master and

slave processors. Upon external signal (provided through spare

discrete inputs) this program could for example:

a) Execute a halt thereby simulating the effects of many

sequential logic faults.

b) Fault memory locations. (EPROM would have to be temporarily

relocated to RAM.)

c) Simulate faults in analog and discrete I/O.

5.5.4 Elimination of Man-Made Faults

Unlike physical faults, man-made faults (Section 3) can be

eliminated through hardware and/or software re-design. Experience

with fault tolerant digital flight control systems has shown that

thorough ground integration and validation testing and flight

testing* can expose in excess of 95% of man-made faults. By

tracking design errors during testing one can obtain the (typical)

history shown in Figure 5-7).

*For a system of the scale of AMAP/SANDAC IV/STAR: approximately

2000 hrs ground test; 50 hrs flight test.

-65-

Li'

LiL'i

C/)-

C/)

LL-J

C-D -,,

4z Cz

-66-

6.0 Conclusions

As stated at the outset, the principal objective of this report

has been to provide the avionics designer with some of the

perspectives, tools and techniques needed to realize the fault

tolerant AMAP system in the advanced rotorcraft application.

Selection of static, dual redundancy for AMAP/SANDAC IV is based

on information currently at hand. This choice however should be

continuously re-examined as future AMAP and advanced rotorcraft

system definition evolve from the AMAP/SANDAC IV development

experienice.

I -67-
i

'[

REFERENCES

1. J. Dasaro, C. Elliott, "Synthesis of an Integrated Cockpit
Management System", AHS/NASA Specialists Meeting On Helicopter
Handling Qualities, Palo Alto , Calif., April 1982.

2. G. Marner, R. Pruyn, ""LHX System Design for Improved
Performance and Affordability", Journal of the American
Helicopter Society, July 1983.

3. Boeing Vertol Company, "Integrated Subsysiems and an
Associated Cockpit Configuration Suitable for a Scout Version of
a Family of Light Helicopters (LHX - Scout)"", Final Report of
Conceptual Feasibility Study,
Report D210-12225-1, March, 1983.

4. J. Dasaro, "Evolution Toward a Multi-Bus Architecture for
Army Helicopter Avionics Systems", AGARD Guidance and Control
Panel 38th Symposium, Paper 45, Monterey, Calif. May 1984.

5. BoeinZ Vertol Company, "Advanced Digital/Optical Control
System (ADOCS) Flight Demonstrator Program", Interim Technical
Report D358-10045-1, May, 1983.

6. J.H. Lala, "Fault Detection, Isolation and Reconfiguration
in FTMP: Methods and Experimental Results", 5th Digital Avionic.;
Systems Conference, Seattle, Washington, Oct. 31 - Nov.3, 1983.

-68-

APPENDIX

PRELIMINARY RELIABILITY ANALYSIS OF AMAP/SANDAC IV PROCESSOR

Given a completed, detailed digital system design (including

parts lists and component quality grades) one can formally employ the

method of MIL-HDBK-217D to obtain a reliability prediction of the

fielded system.

Where fine design detail is unavailable (e.g. in preliminary

architectures tradeoff studies) digital system reliability must be

estimated using nominal failure rate values for the system

components. In the past, USC has used the following failure rates

for estimating reliability of microprocessor-based digital flight

systems:

Component Failure Rate (per hour)

LSI Semiconductor chip
10-6

Single connector contact
10

-6
Cry.tal

10-6

Power Supply Reg./Cap.
10-5

Discrete Logic, PC Boards negligible
Solder joints and feedthroughs

For the simplex (i.e. non-redundant) system, overall system

failure rate is simply the sum of the failure rates of the individual

components. For each AMAP/SANDAC IV module we would have roughly:

-69-

Item Failure rate (per hour)
-5

(10) LSI components 10
-J4

(100) Contacts 10

Balance negligible

-4
Total (per hour) 1.1 x 10

From ten AMAP modules (Table -2 in main body of report) one
-3

would therefore have a failure rat of roughly 10 /hr.

II

-70-

i.
L I I I I I I I I I I I

